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Using single cluster flip Monte Carlo simulations we accurately determine new finite size scaling functions
which are expressed only in terms of the variablex5jL /L, wherejL is the correlation length in a finite system
of size L. Data for thed52 andd53 Ising models, taken at different temperatures and for different size
lattices, show excellent data collapse over the entire range of scaling variable for susceptibility and correlation
length. From these finite size scaling functions we can estimate critical temperatures and exponents with rather
high accuracy even though data are not obtained extremely close to the critical point. The bulk values of the
renormalized four-point coupling constant are accurately measured and show strong evidence for hyperscaling.
@S1063-651X~96!02708-0#

PACS number~s!: 64.60.2i, 05.70.Jk, 05.50.1q

I. INTRODUCTION

True critical phenomena can possibly take place only in
the limit in which the size of the system becomes infinite
~i.e., the thermodynamic limit!. The singular behavior of a
system near a critical point is characterized by the bulk val-
ues of various physical quantities; it is technically impos-
sible, however, to directly obtain information about infinite
lattices from Monte Carlo simulation. Practically, however,
it is not necessary to make the size of the lattice infinite in
order to estimate a thermodynamic value through a Monte
Carlo simulation of finite lattices: The concept of finite size
scaling~FSS! @1#, introduced to extrapolate the information
available from the finite system to the infinite volume limit,
has been remarkably successful. The most frequent applica-
tion of FSS@2# has been primarily concerned with extracting
some universal quantities such as the critical exponentn or
some ratios of the critical exponents, without knowledge of
the bulk values in the scaling regime. The standard finite size
scaling variable isx5tL1/n with the reduced temperature
t[uKc2Ku/Kc , whereK is the inverse couplingK5J/kT
andKc is the inverse critical coupling. Of course, use of this
variable presupposes knowledge of the correct critical cou-
pling and the uncertainty inKc introduces a source of error
into the analysis. Another formulation proposed by Fisher
usedt̃5uKc

L2Ku/Kc
L), but since this requires knowledge of

multiple finite lattice ‘‘critical couplings’’ it has seldom been
used. Some nonuniversal critical parameters likeKc can also
be calculated by different FSS techniques, e.g., the fourth
order cumulant ratio method@3# or the microcanonical
Monte Carlo~MC! method@4#.

Nonetheless, determining bulk values~i.e., in the thermo-
dynamic limit! is an important task of MC simulations, be-
cause physical quantities can then be directly compared with
experiment. Also, the variation of a suitable thermodynamic

quantity with temperature near criticality characterizes its
critical behavior, even if it is not describable by a power law.
A criterion telling whether a quantity measured on a finite
lattice at a temperatureT is distinguishable from the thermo-
dynamic value~value in the thermodynamic limit! is the ratio
of the linear size of the lattice (L) to the correlation length
@j(T)#: providedL/j(T) is sufficiently large, the measured
quantity becomes essentially independent ofL. Thus, one
needs very largeL at temperatures wherej(T) becomes
large. Unfortunately, in this situation critical slowing down
limits the quality of the data. Recently, new techniques of
FSS have been introduced@5,6#, which enable one to extract
correct thermodynamic values indirectly for a variety of
physical quantities. The feature characteristic of these tech-
niques is the calculation of some FSS functions defined in
terms of a nonconventional FSS variable.

In this paper, we numerically calculate certain FSS func-
tions which are different from the ‘‘usual’’ ones and extract
estimates for the values of critical parameters for the two-
and three-dimensional Ising models. In the next section we
provide the theoretical background, and in the following sec-
tion we calculate bulk values of the correlation length (j),
magnetic susceptibility (x), and renormalized four-point
coupling constant (g(4)). We summarize and conclude in the
final section.

II. THEORY AND SIMULATION

The fundamental assumption of FSS theory@1# is that
AL(t), the value of some thermodynamic quantityA on a
finite lattice of linear sizeL, can be expressed as

AL~ t !5Lr/n f A„s~L,t !…, s~L,t ![L/j~ t ! ~1!

for a bulk quantityA which has a power-law critical singu-
larity A(t);t2r wheret5uKc2Ku/Kc . Equation~1! is valid
for values ofL and j(t) which are large; otherwise, there
should be corrections to FSS, which unless explicitly stated
are ignored throughout this work.

Notice that using the critical form forj, j(t);t2n, we
can rewrite the scaling variables(L,t) as
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s~L,t !5@A~ t !/Lr/n#2n/r, ~2!

so that Eq.~1! may be rewritten as

AL~ t !5A~ t !FA„s~L,t !…, ~3!

where the relation between the scaling functionsf A andFA is
given by

FA~s!5sr/n f A~s!. ~4!

For A5j, Eq. ~3! shows thatjL(t)/L is just a function of
j(t)/L and vice versa, and this leads to the relation

AL~ t !5A~ t !QA„x~L,t !…, ~5!

wherex(L,t)[jL(t)/L is the ratio of the correlation length
on a finite latticeto the lattice size, andQA(x) is given by

QA~x!5FA„f j
21~x!…. ~6!

Using the same observation, it is trivial to obtain@7# another
equivalent form,

AbL~ t !5AL~ t !GA„x~L,t !…, ~7!

where b is a scaling factor andGA(x) is another scaling
function.

It is evident that givenf A one can determine the other two
scaling functions from Eqs.~4! and ~6!, and all the scaling
functions, f A , FA , QA , andGA should be universal. It has
also been argued@8# that a certain asymptotic form of
f A(s) can be expressed in terms of the critical exponentd;
by fitting this functional form one can extract an estimate for
the critical exponent.

It is worth stressing that use of the scaling functionQ
rather thanF would be more convenient in many cases, par-
ticularly because one does not need the bulk correlation
length to define the former. Note that there is no explicitt
dependence of the scaling variables, so that knowledge of the
critical coupling is not required, and thatx becomes indepen-
dent of L at criticality. This L independent value ofx at
criticality, xc , which characterizes a universality class for a
given geometry@9#, forms the upper bound ofx. In other
words, the scaling functionQ is defined only over
0<x<xc . A priori, the two limits of the scaling function
Q are known for a continuous phase transition:
limx→0Q(x)→1 and limx→xc

Q→0, becauseAL converges to

its bulk value in the former case whileA(t) diverges in the
latter case withAL(t) finite. In general, as we will show in
this work, for A5j, x, or g(4), QA(x) turns out to be a
monotonically decreasing function ofx.

It is important to realize that the knowledge of the scaling
functionQ nearx.0 plays as relevant a role as that near
x.xc to the extraction of necessary information of the criti-
cal behavior in~deep! scaling region. It can be easily seen by
noting thatx(L,t) for a fixed temperature arbitrarily close to
criticality can be made arbitrarily close to zero by simply
choosing a value ofL sufficiently large.

Equations~3! and ~5! do not include any critical expo-
nents, so that one might conjecture that their validity can be
extended to non-power-law singularities. Although a general
proof of this conjecture is missing, Lu¨scher@10# obtained an

explicit expression for the inverse correlation length~mass
gap!, that is consistent with Eq.~5!, for the two-dimensional
~2D! O(N) (N.2) spin models, which exhibits an exponen-
tial critical singularity. Also, very extensive numerical veri-
fication @5# of Eq. ~5! was given forx and j for the 2D O
(N) models withN52 and 3.

In order to define a correlation length, we consider the
Fourier transform of the~connected! two-point correlation
function,

G~k![(
x
exp~ ik•x!^S0•Sx&c , ~8!

whereSx denotes the spin variable at sitex. Whenx is suf-
ficiently large,̂ S0•Sx&c;e2uxu/jL holds@11#, so we will have

G~k!215G~0!21@11k2jL
21O~k4!#. ~9!

By choosingk5(2p/L,0), we obtain

jL5
1

2sin~p/L !
AG~0!/G~k!21, ~10!

for values ofL that are large enough that terms;k4 can be
safely ignored.

The renormalized coupling constantgL
(4) may be defined

as @12#

gL
~4!53~L/jL!DUL , ~11!

whereD is the lattice dimensionality and the fourth order
cumulant is given byUL[12^S4&/3^S2&2, with S being the
order parameter. The bulkg(4) has a well defined scaling
behavior@7#,

g~4!~ t !;tDn22D1g. ~12!

g(4) describes the non-Gaussian character of the the model,
i.e., only for a Gaussian model doesg(4)(t) vanish ast→0 in
the absence of certain multiplicative corrections to scaling,
implying the violation of the hyperscaling relation
Dn22D1g.0. For a system where the hyperscaling rela-
tion is satisfied~without certain multiplicative corrections to
scaling, as in the four-dimensional Ising model!, its bulk
value in the scaling regime remains a constant that charac-
terizes its universality class.

Employing the single cluster Monte Carlo algorithm@13#,
we simulated the 2D and 3D Ising models, on the square and
simple cubic lattices, respectively, with fully periodic bound-
ary conditions imposed. For each lattice at a given tempera-
ture, we generated up to 30 bins of data each of which is
composed of 10 000 measurements. In order to reduce the
correlation between data points, only configurations 3–7
Monte Carlo steps apart were considered. Our quoted errors,
which are purely statistical in nature, are the standard devia-
tion of the binned values. Aware of the bad performance of
some random number generators in the context of the single
cluster algorithm@14#, we have double-checked our results
by comparing data generated by two different implementa-
tions of the algorithm, each one using a different kind of
random number generator. Most of the data were obtained
with a linear congruential random number generator of the
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form xi11569 069xi11 mod(231). The other random num-
ber generator was a multiplicative, lagged Fibonacci genera-
tor of the formxi115xi24423xi21393, which showed a good
performance in a single cluster simulational test of the Ising
system@15#. We observed complete agreement between the
two sets of data within our statistical errors. We therefore
believe that to within the error bars quoted here our data are
not biased due to any correlation among the random num-
bers. ~We also tried the well known R250 routine but the
data exhibited some systematic deviation and we did not
consider them in our analysis.!

III. RESULTS

A. 2D Ising model

We now investigate the finite size behavior for a variety
of multiplicatively renormalizable physical quantities@10#
defined on a finite lattice of linear sizeL, in particular, the
susceptibilityx and correlation lengthj. First, we choose a
certainK and perform measurements ofAL(K) for various
values ofL. In Table I we present our data forK50.425,
with L varying from 16 to 150. The reason for starting from
L516 is that near thisL the systematic error in our definition
of jL , Eq. ~10!, is about;1022 which is comparable to our
typical statistical errors. From these data in Table I one sees
that j is indistinguishable from its bulk value forL>80, to
within very small statistical error. In terms of the scaling
variables, this means thats>5.076 or x<0.196. As we
stressed earlier, this condition holds~in terms of the scaling
variables! regardless of the temperature as long as it remains
in the scaling regime.~This is indeed the fundamental state-
ment of FSS.! We note that forx the thermodynamic condi-

tion holds for a slightly larger value ofs ~smallerx) than that
for j, namely,s>6.346. Figure 1 shows the data collapse
forFA(s).

From the data in Table I, we can easily determine
FA(s) andQA(x). In order to satisfy the asymptotic condi-
tions, for the former one may try a polynomial function of
either 1/s or e2s, while for the latter a polynomial ofx or
e21/x may be tried. That is,

FA~s!511b1 /s1b2 /s
21•••, ~13!

QA~x!511b1x1b2x
21•••, ~14!

or

FA~s!511c1e
2s1c2e

22s1•••, ~15!

QA~x!511c1e
21/x1c2e

22/x1•••. ~16!

In general, it turns out that for the same number of fitting
parameters the polynomial of the exponentials fits better than
that of the simple scaling variables. This is especially true for
the magnetic susceptibility and the four-point renormalized
coupling constant. For instance, by considering terms
up to the fourth order of the polynomial,
x2/NDF(degree of freedom)53.3 and 0.3, respectively, for
theQx(x), assuming the simple polynomial and that of the
exponential. Considering up to thee24/x term, we obtain
c1522.402,c25216.338,c3580.688, andc452134.6 for
Qx with x2/NDF50.31, while they are20.768,28.490,
31.032, and 289.203, respectively, for Qj with
x2/NDF50.20.

A priori, the estimates are accurate only for
x<jL0 /L0[x0 , with L0 denoting the smallest value ofL for

K50.425; for the estimate of the coefficients forx.x0 , one
needs similar data forAL at a largerK, which might modify
the values of the coefficients. Nevertheless, with the infor-
mation of the finite size scaling functionQA , it is now pos-
sible to extract accurate bulk data from the Monte Carlo data
on a modestlysmall lattice provided a data point~at another

TABLE I. AL as a function of L at K50.425.
j`(K50.425!515.7582 . . . from Eq. ~17!. Note that ourjL con-
verges to its bulk value forL>80, within the small statistical errors,
and that the value ofx monotonically decreases withL.

L jL x xL

16 9.83~3! 0.614~2! 102.4~2!

18 10.56~4! 0.587~2! 119.8~3!

20 11.18~5! 0.559~2! 137.0~6!

22 11.74~4! 0.534~2! 153.5~5!

25 12.44~5! 0.498~2! 177.1~7!

27 12.85~5! 0.476~2! 191.9~7!

30 13.37~6! 0.446~2! 212.7~6!

32 13.69~7! 0.428~2! 224.7~9!

34 13.92~6! 0.409~2! 235.2~9!

36 14.19~6! 0.394~2! 246.6~8!

40 14.54~6! 0.363~2! 264.9~6!

50 15.19~8! 0.304~2! 296.0~1.0!
60 15.40~6! 0.257~1! 312.5~1.0!
70 15.62~7! 0.223~1! 321.3~1.4!
80 15.71~8! 0.196~1! 326.6~1.3!
100 15.75~10! 0.157~1! 329.4~1.8!
110 15.77~10! 0.143~1! 331.0~1.5!
150 15.75~14! 0.105~1! 331.4~1.6!

FIG. 1. FA(s) for the 2D Ising model. Each ‘‘curve’’ demon-
strates the data collapse for two different values ofK. Note that the
lower curve converges toFA(s)51, i.e., thermodynamic limit,
more slowly than the upper curve.
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temperature! satisfies x,x0 . Our results for
K50.430,0.434,0.436, and 0.438 are summarized in Table
II.

We notice that the bulk values thus extracted for a given
K do not change with respect toL, indeed verifying this
form of FSS for the model~see Fig. 2 also!. We also note
that the values of the bulkj thus extracted are in excellent
agreement with the corresponding exact values given by the
formula

1/j~K !5 ln~cothK !22K, ~17!

within typically less than 0.5% of the statistical errors. As a
test of our x, we fitted the data over the range from
K50.425 to 0.438 to

x;t2g. ~18!

The bestx2 fit gives Kc50.440 70(5) andg51.755(9)
(g51.752 by fixingKc to the exact critical point!, being

extremely close to the exact values. Since all of our data used
for the analysis were fort.0.006, the quality of the result is
surprisingly good.

B. The 3D Ising model

We begin with our Monte Carlo measurement at
K50.220, the results of which are summarized in Table III.
We observe that the thermodynamic condition forj is almost
satisfied for L/jL'60/10.89'5.5. Nevertheless, we also
note thatx andg(4) increase, albeit very slowly, beyond this
value. This is another indication that certain quantities con-
verge to the thermodynamic value more slowly than the cor-
relation length.

Assuming thatAL(K50.220) reaches its bulk value for
L570, we obtain

c1.20.418, c2.218.83, c3.99.38, c4.2436.4,
~19!

c1.20.607, c2.256.31, c3.416.75, c4.21399.9,
~20!

TABLE II. The extraction of thej and x for the 2D Ising model based on the computation of the
QA(x). The ‘‘ave.’’ for eachK denotes the average over the extracted bulk values from the different values
of L(x).

K L jL x xL j x

0.430 20 13.00~7! 0.650 158.5~4! 23.16~17! 650.4~16.2!
30 16.67~7! 0.556 274.5~4! 23.33~11! 653.2~5.4!
40 18.97~8! 0.474 377.3~6! 23.20~9! 647.5~4.2!
50 20.57~8! 0.411 461.1~8! 23.31~8! 650.2~3.8!
60 21.57~8! 0.359 524.5~1.5! 23.30~7! 651.0~5.5!
80 22.57~10! 0.282 597.0~2.2! 23.23~8! 649.7~6.3!
100 22.89~11! 0.229 625.3~2.3! 23.15~9! 646.6~5.9!
120 23.12~17! 0.193 638.2~5.0! 23.23~13! 647.2~12.4!

ave. 23.21~11! 649.5~2.2!
exact 23.22

0.434 80 32.94~7! 0.412 1047.5~2.5! 37.34~7! 1478.6~11.9!
160 36.77~9! 0.230 1426.5~9.0! 37.19~14! 1476.0~23.1!

ave. 37.27~11! 1477.3~1.8!
exact 37.21

0.436 50 31.58~9! 0.632 761.7~1.4! 53.10~20! 2745.0~43.7!
60 35.35~11! 0.589 977.4~2.1! 53.18~19! 2743.8~39.8!
70 38.54~12! 0.551 1186~3! 53.41~18! 2759.0~37.7!
80 41.23~13! 0.515 1389~3! 53.65~17! 2779.4~31.8!
90 43.08~7! 0.479 1563~2! 53.01~8! 2724.8~17.5!
100 45.04~13! 0.450 1746~2! 53.37~14! 2751.1~24.7!
120 47.96~14! 0.400 2033~5! 53.69~13! 2776.8~22.4!
160 50.55~20! 0.316 2384~7! 52.96~17! 2724.1~22.9!

ave. 53.30~28! 2750.6~20.8!
exact 53.16

0.438 80 51.88~13! 0.649 1777~4! 91.97~31! 7209.7~142.4!
160 76.31~34! 0.477 4259~13! 93.66~39! 7378.2~93.0!

ave. 92.82~1.20! 7294.0~119.1!
exact 92.86
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c1.27.238, c2.21.42, c3.216.09, c4.3.67,
~21!

respectively, forQj(x), Qx(x), andQg(4)(x), over the range
0<x<x0[0.491.

Based on the knowledge ofQA(x), we calculate the bulk
values of the correlation length, magnetic susceptibility, and
four-point renormalized coupling constant for variousK up
to K50.2212. The largest value ofL we simulated for the
calculation is just 64. Obviously, the computation of the bulk
value at aK larger than 0.2212 requires a larger value ofL in
order to keep the value ofx smaller thanx0 . One way to
avoid the need for a largerL is to repeat the measurement of
AL at a slightly larger value ofK, e.g.,K50.2212; this will
extend the range ofx over whichQA is accurately computed.
In the region whereQA(x)'0, however, one needs ex-
tremely precise measurements to reduce the errors in the es-
timates of the bulk values@16#.

A summary of our results is shown in Table IV. We see
that the four-point renormalized coupling constant remains
unchanged, i.e.,g(4)'24.5, forK>0.2206. Its slow varia-
tion for K,0.2206 may be due to the presence of corrections
to scaling. Hence the hyperscaling relation is indeed satis-
fied, confirming the previous verification~within rather
larger statistical errors though! based on the traditional
Monte Carlo measurement@12,17#. We would like to stress,
however, that it was not possible to measureg(4) beyond
K50.2206 in Ref.@12#, even usingL as large asL590. The

bulk x and j thus extracted are compared with those tradi-
tionally obtained, again yielding remarkable agreement~see
Table IV!. Figure 3 exhibits excellent data collapse for the
finite size scaling functionQA(x) for A5x,j, andg(4).

In order to determineKc , n, andg we fitted our bulk data
over the range 0.217<K<0.2212 to the simple power-law
singularity. We fixed the critical point in the fit, and then
repeated the fit for several different fixed critical points. The
results, shown in Fig. 4, indicate that thex2 values of the
j and x data favor the range of Kc over
0.221 640<Kc<0.221 670, being consistent with other re-
cent results@18#. The empirical formulas we obtained from
the best fit are as follows:

j5Cj~ uK2Kcu/Kc!
2n, Cj50.4710, Kc50.221 658,

n50.6418, ~22!

x5Cx~ uK2Kcu/Kc!
2g, Cx51.0892, Kc50.221 646,

g51.2388. ~23!

The value ofn is larger by approximately 1.5% than those
extracted by most other methods, while the value ofg agrees
up to;1023. The effect of including the term of the con-
fluent correction to the scaling turns out to be minimal: the
confluent correction term would usually be important when
data with rather smaller bulk values of the correlation length
are considered. Given the modest size lattices used and the
distance from the critical points at which the actual measure-
ments were made (t.0.002), we find the agreement with
high resolution studies to be extremely gratifying.

IV. DISCUSSION AND CONCLUSION

In this paper we computed an alternative finite size scal-
ing function, defined in terms of the scaling variablejL /L,
for the 2D and 3D Ising models. This type of finite size
scaling function has the advantage of being defined even for
small values ofL, without any prior information on the criti-
cal behavior of the system. Thus, our procedure can test FSS
itself by means of data collapse to the extent thatjL can be
accurately measured; in this manner, we observed that the
effect of the violation of FSS is negligibly small at least for
L>16 for the two- and three-dimensional Ising models. We
illustrated how the function can be used for the extraction of
correct bulk values near criticality, and that it can be used in
extracting accurate critical parameters provided the values of
the correlation length are sufficiently large, i.e., approxi-
matelyj>5.

One might wonder if this technique requires an accurate
bulk value of a physical quantityA at least at one point of
temperature. As far as the extraction of critical parameters is
concerned, however, this is not necessarily the case. To see
this, imagine that we start with a fake ‘‘bulk value’’A8(t)
instead of the correct oneA(t). The scaling functionQ8
defined in terms of the fake bulk value,Q8A
[AL(t)/A8(t)5@A(t)/A8(t)#QA , simply rescales the cor-
rect scaling function by a constant; accordingly, every bulk
value calculated at any other temperature usingQA8 rescales
the correct one with an overall factorA8(t)/A(t). This over-

TABLE III. AL(K) at K50.220 for the 3D Ising model.

L jL x xL gL
(4)

16 7.85~2! 0.491~1! 228.8~7! 9.52~5!

20 8.85~2! 0.443~1! 298.1~7! 11.43~5!

24 9.56~2! 0.398~1! 351.8~1.1! 13.44~7!

30 10.20~3! 0.340~1! 407.1~1.1! 16.5~1!

36 10.56~2! 0.293~1! 439.5~1.2! 19.2~2!

40 10.68~3! 0.267~1! 455.2~1.5! 21.4~3!

50 10.85~3! 0.217~1! 467.9~1.3! 23.5~5!

60 10.89~3! 0.182~1! 472.3~0.8! 24.2~5!

70 10.91~3! 0.156~1! 473.0~1.1! 24.7~5!

FIG. 2. QA(x) for the 2D Ising model.
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all factor is unimportant for the extraction of the critical be-
havior. One can thus repeat our analysis arbitrarily close to a
critical point, where the effect of corrections to scaling can
be arbitrarily small. We anticipate that such an analysis will

TABLE IV. The extraction of thej andx for the 3D Ising model. The uncertainties in the values ofx are
not considered for our error estimates. Traditional Monte Carlo measurements are in rows labeled MC.

K L jL x xL gL
(4) j x g(4)

0.217 16 5.30~1! 0.331 114.6~2! 17.7~1! 5.62~1! 130.8~2! 25.5~1!

20 5.49~1! 0.275 124.5~4! 21.2~2! 5.63~1! 130.7~4! 25.4~1!

28 5.60~1! 0.200 130.1~1! 24.6~2! 5.62~1! 131.0~3! 25.8~2!

ave. 5.62~1! 130.9~4! 25.6~3!

0.219 20 7.33~2! 0.366 212.4~7! 15.3~2! 8.04~2! 262.2~9! 24.9~6!

30 7.88~3! 0.263 251.5~1.5! 21.8~5! 8.03~4! 260.9~1.6! 25.7~6!

ave. 8.03~4! 261.6~2.1! 25.3~1.1!
MC 50 8.1 263 26

0.2203 30 11.16~8! 0.372 481.4~5.3! 14.8~1! 12.31~9! 602.7~6.6! 24.6~2!

40 12.00~3! 0.300 561.4~2.6! 19.3~2! 12.44~3! 608.2~3.1! 25.1~4!

ave. 12.38~15! 605.5~8.8! 24.9~7!

0.2206 24 11.20~5! 0.467 467.4~2.8! 10.3~2! 14.55~6! 834.2~5.0! 24.5~2!

30 12.49~10! 0.416 589.2~2.7! 12.5~2! 14.66~12! 844.4~3.9! 24.6~2!

36 13.28~5! 0.369 673.8~3.6! 14.9~3! 14.60~5! 836.8~4.5! 24.5~3!

40 13.70~4! 0.343 718.0~3.4! 16.3~2! 14.66~4! 838.4~5.0! 24.4~3!

50 14.28~5! 0.286 789.7~4.0! 19.4~3! 14.68~5! 839.7~5.3! 24.2~4!

60 14.38~3! 0.240 809.9~1.6! 22.4~3! 14.53~5! 827.6~2.6! 25.1~4!

ave. 14.61~6! 837.0~5.7! 24.6~3!

MC 75 14.5 828 24

0.2210 40 16.75~3! 0.419 1045.0~3.1! 12.3~1! 19.73~5! 1511.5~5.5! 24.5~2!

50 18.15~4! 0.363 1245.7~4.1! 15.1~2! 19.82~8! 1524.3~7.1! 24.4~4!

ave. 19.77~12! 1518.~15.! 24.5~3!

0.2212 56 21.98~7! 0.393 1796.0~10.5! 13.6~1! 24.89~10! 2382~14! 24.5~2!

64 22.89~7! 0.358 1971.6~10.4! 15.5~2! 24.86~10! 2382~13! 24.4~4!

ave. 24.88~12! 2382~14! 24.5~3!

FIG. 3. QA(x) for the 3D Ising model. The solid lines are from
the best fits.

FIG. 4. The resulting estimates for the critical exponentsg and
n for different choices of the critical couplingKc . The correspond-
ing errors are given by the light dotted lines. Solid~dashed! curves
correspond tox (j) data. The shadings show acceptable values for
the critical parameters. On the bottom:x2 plotted againstKc ; ver-
tical arrows locate our best estimates forKc , whereas the horizontal
ones indicate the error bars.
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yield extremely accurate estimates of the critical parameters,
and our study of the 3D Ising model along this line is under
way. ~This observation is also important for some calcula-
tions of lattice gauge theory. For example, in full lattice
QCD, the computation of the ratio of the mass of various
lattice hadrons is of primary concern, and for this purpose
the overall factor is simply unimportant.!

We would like to stress again that the technique we have
illustrated is extremely general; it holds regardless of the
functional form of the critical singularity, and irrespective of
the quantity as long as it is multiplicatively renormalizable.
We demonstrated this point taking the example of the four-
point renormalized coupling constant, whose bulk value is
notoriously difficult to measure through traditional Monte

Carlo simulation@17,19#. Although our current estimate of
the critical parameters cannot compete with the highest reso-
lution Monte Carlo studies, our estimates are really surpris-
ingly good considering how far from the critical point the
data are taken. Thus, although the determination of a finite
lattice correlation function is needed, this method offers a
simple alternative to standard finite size scaling methods.
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